

Surprising results on the composition of the highest energy cosmic rays

Eun-Joo Ahn

Fermilab

PRD vol 90, 122005 & **122006** (2014)

Ultra High Energy Cosmic Rays

→ low-luminosity high-energy fixed target experiment

 $E_{lab} = 10^{20} \text{ eV}$ $E_{CM} = 430 \text{ TeV}$

With present accelerator technology:

LHC: 27 km circumference, $E_{CM} = 14 \text{ TeV}$

 $E_{lab} = 10^{20} \text{ eV}$ $E_{CM} = 430 \text{ TeV}$

With present accelerator technology:

LHC: 27 km circumference, $E_{CM} = 14 \text{ TeV}$

Orbit of Mercury (3.6x108 km), LHC acceleration time of 815 years

Ultra High Energy Cosmic Rays

What are they?

Where are they coming from?

How do they interact?

Sources of UHECR

Traditionally:

I. Top-down

massive (high energy) object decays or interacts → produces lesser energy particles (UHECRs)

monopoles; topological defects; superheavy relics; UHECRONs; z-bursts; etc

(Schramm & Hill 1983; Hill 1983; Weiler 1982; Bhattacharjee & Sigl 1995; Berezinsky et al. 1997; Kolb et al. 1998; Chung et al. 1998; Albuquerque et al 1999; etc.)

2. Bottom-up

"ordinary" energy particle gets accelerated up by astrophysical means to higher energies

AGN hot spot, jets, central BH; cluster shocks; colliding galaxies; gamma ray bursts; neutron stars; etc.

(Hillas 1984; Thorne et al. 1986; Biermann & Strittmatter 1987; Vietri 1995; Waxman 1995; Kang et al 1996; Olinto et al. 1999; etc.)

Sources of UHECR

Traditionally:

I. Top-down

massive (high energy) object decays or interacts → produces lesser energy particles (UHECRs)

monopoles; topological defects; superheavy relics; UHECRONs; z-bursts; etc

(Schramm & Hill 1983; Hill 1983; Weiler 1982; Bhattacharjee & Sigl 1995; Berezinsky et al. 1997; Kolb et al. 1998; Chung et al. 1998; Albuquerque et al 1999; etc.)

disfavored by photon & neutrino limits

(Pierre Auger Collaboration 2008, 2011, 2013)

2. Bottom-up

"ordinary" energy particle gets accelerated up by astrophysical means to higher energies

AGN hot spot, jets, central BH; cluster shocks; colliding galaxies; gamma ray bursts; neutron stars; etc.

(Hillas 1984; Thorne et al. 1986; Biermann & Strittmatter 1987; Vietri 1995; Waxman 1995; Kang et al 1996; Olinto et al. 1999; etc.)

UHECRs $\geq 5 \times 10^{19}$ eV need to come from nearby

→ flux suppression

Energy spectrum - suppression observed at high energy

UHECR candidates

- Photons, neutrinos: still possible but very low flux
- Protons: abundant throughout the universe many astrophysical locations effectively stable - lose energy during propagation, neutron decays back into proton
- Heavier nuclei: less abundant able to accelerate to a higher energy in a given source

IETP 2015

UHECR candidates

- Photons, neutrinos: still possible but very low flux
- Protons: abundant throughout the universe many astrophysical locations effectively stable - lose energy during propagation, neutron decays back into proton
- Heavier nuclei: less abundant

able to accelerate to a higher energy in a given source

lose energy, disintegrate during propagation

Fe nucleus - most stable

intermediate nuclei - less stable

- → Fe nuclei are most likely for heavier particles
- ► Intermediate nuclei type will vary dependent on propagation modeling

Observe, understand, characterize the ultra high energy cosmic rays and probe particle interactions at the highest energies

Malargüe, Argentina
 ~ 3000 km²

Observe, understand, characterize the ultra high energy cosmic rays and probe particle interactions at the highest energies

- Malargüe, Argentina
 ~ 3000 km²
- Surface detectors (SDs)
 - 1660 water Cherenkov detectors (WCDs)(12 tonnes, 1.5 km spacing)
- enhancements: closer-spaced infill, muon detectors
- Fluorescence detectors (FDs)
 - 24+3 air fluorescence telescopes in periphery
 - enhancement: High Elevation
 Auger Telescope
- ▶ Energy range
 - main array: >10¹⁸ eV
 - enhancements: >10¹⁷ eV

Hybrid design: thoroughly understand capabilities & systematic uncertainties of both detectors

SDs: 100% duty cycle, measure particle density

Hybrid design: thoroughly understand capabilities & systematic uncertainties of both detectors

SDs: 100% duty cycle, measure particle density

Observation with the fluorescence detector

Observatory for hybrid detection

• SD constrains shower geometry → reduce uncertainty of observed shower profile

(slant depth: air mass along cosmic ray trajectory)

Observatory for hybrid detection

(slant depth: air mass along cosmic ray trajectory)

Data selection

December 2004 - December 2012

TABLE I. Event selection criteria, number of events after each cut and selection efficiency with respect to the previous cut.

Cut	Events	ε [%]	
Pre-selection:			
Air-shower candidates	2573713	• • •	
Hardware status	1920584	74.6	
Aerosols	1569645	81.7	
Hybrid geometry	564324	35.9	
Profile reconstruction	539960	95.6	
Clouds	432312	80.1	
$E > 10^{17.8} \text{ eV}$	111194	25.7	
Quality and fiducial selection	•		
P(hybrid)	105749	95.1	
$X_{\rm max}$ observed	73361	69.4	
Quality cuts	58305	79.5	
Fiducial field of view	21125	36.2	
Profile cuts	19947	94.4	

Combine showers observed at more than: 19,759 one FD site (stereo, triple, quadruple)

Field of View

→ Prevent bias to event selection

Field of View

→ Prevent bias to event selection

19,759 events: for the first time in cosmic ray history, the full distribution of X_{max} has been obtained.

log(E/eV) = 17.8-17.9

No. events: 3768

 $log(E/eV) \ge 19.5$ No. events: 37

Reasons to use the X_{max} distribution

Different composition: identical first two moments, different distribution

- No degeneracy in untangling mass combination
- Better understanding of composition
- Information on hadronic interaction models (particle physics at $E_{CM} \gtrsim 35 \text{ TeV}$)

Find composition of UHECRs from the X_{max} distributions

- Compare data to simulations

- ▶ Simulations mimic true X_{max} distribution
- ▶ We do not observe the true X_{max} distribution
 - detector acceptance across X_{max} FOV
 - position determination affected by resolution ability
- Create templates that can be properly compared with the data
 - modify the simulations so they become "observations"

Making of a template

- 1. Generate MC for each energy bin, species, hadronic interaction models;
 - 18 energy bins from E=10^{17.8} eV to E≥10^{19.5} eV
 - species: p, He nucleus, N nucleus, Fe nucleus
 - hadronic interaction models: EPOS-LHC, QGSJET II-4, Sibyll 2. I
 - 20,000 events each
- 2. Fold in acceptance and detector smearing matrix to the true X_{max} distribution;
- 3. Create template for each species under consideration, combine to form MC prediction.

Fitting template to data

- Find best fitting species combination via binned likelihood
 - for j-th X_{max} bin, compare MC prediction C_j with data n_j

$$L = \prod_{j} \frac{e^{-C_{j}} C_{j}^{n_{j}}}{n_{j}!} \qquad \xrightarrow{\text{likelihood ratio}} \qquad \prod_{j} \frac{e^{-C_{j}} C_{j}^{n_{j}}}{n_{j}!} \sqrt{\frac{e^{-n_{j}} n_{j}^{n_{j}}}{n_{j}!}}$$

$$= \prod_{j} \frac{e^{-C_{j}} C_{j}^{n_{j}}}{n_{j}!} \sqrt{\frac{e^{-n_{j}} n_{j}^{n_{j}}}{n_{j}!}}$$

- Goodness of fit: obtain p-value with MC-based method
 - find best fit from data → generate mock data sets based on this fit
 - p-value = fraction of mock data sets with worse fit than fit from real data
- Systematics: consider systematic uncertainty from measurement
 - measured X_{max} (scan between -1 σ to +1 σ)
 - energy scale
 - X_{max} resolution
 - acceptance

refit data with extreme values of the parameterizations

encompass full range of values obtained by any of the fit variants p-values also calculated

Fit results

CAUTION! Results are dependent on the hadronic interaction models Modification of the models may lead to changes

p + Fe hypothesis

- Mostly to mainly protons for $E < 10^{19} \text{ eV}$
- Poor quality fit: hadronic interaction models cannot describe data with p & Fe
 - → hypothesis of **only p and Fe not feasible** something else required

Lack of Fe nuclei

Stacked histograms

p = 0.009

Sibyll 2.1

15

Z 10

log(E/eV) > 19.5

Fe distribution:

- too shallow (small X_{max})
- peaks at smaller X_{max} than data
- wider than data

for all models considered

→ Data need a distribution that is deeper (larger X_{max}) and narrower

• Better fit quality for EPOS-LHC, but not for Sibyll 2.1 & QGSJET II-4

Inclusion of an intermediate mass nucleus

10^{17.8-17.9} eV

Sibyll 2.1

QGSJET II-04

EPOS-LHC

Fits can have different composition combinations, yet ...

- Similar p and Fe fraction
- Similar He+N fraction
- Amount of He and N varies

Each hadronic interaction model differs in how the air shower develops (cross section, multiplicity, elasticity) & evolve differently with increasing nucleus mass.

	р	He	N	Fe
Sibyll 2.1	0.57	0.26	0.17	0.00
QGSJET II-04	0.46	0.50	0.04	0.00
EPOS-LHC	0.49	0.08	0.36	0.07

Constrain hadronic interaction models

- p+Fe: Fe distribution is too shallow for data, p distribution cannot cover peak or head region
- p+N+Fe: N distribution covers head region but still cannot fit well
- p+He+N+Fe: data prefers mostly He, but cannot describe data adequately
- Data prefers p & He poor fit quality
- → No possible realistic species can make better this model requires modification

Eun-Joo Ahn

To recapitulate;

Between 7×10^{17} eV to 4×10^{19} eV,

- Surprise #1
 - → Hypothesis of "p and Fe only" does not work!!
 Substantial presence of intermediate species required!!
 - → No or very little p and Fe at highest energy bin
- Surprise #2
 - → Considerable presence of protons below "ankle" (5x10¹⁸ V)
 - unexpected due to large scale anisotropy limits; pose some constraints in explaining presence of ankle
- Understand better and constrain hadronic interaction models
 - \rightarrow X_{max} distribution shows why some species do or do not work
 - constrain model when varying or increasing species do not work

Energy spectrum - what is causing the suppression?

What is the reason for the flux suppression?

 GZK cutoff extragalactic protons (Berezinsky & Grigoreva 1988 etc.) (Taylor, et al 2011 etc.) extragalactic proton & nuclei Photodisintegration of (Hillas 1984; heavy nuclei Galactic and extragalactic nuclei Fang et al 2013 etc.) (Allard et al. 2008 etc.) extragalactic proton & nuclei Limited energy at source $E^{3} \frac{[eV^{2} \text{ km}^{-2} \text{ sr}^{-1} \text{ yr}^{-1}]}{0}$ pure proton or Fe nuclei at source work in GZK or photo-disintegration progress $e^{3} f(E) \left[eV^{2} \, \mathrm{km}^{-2} \, \mathrm{sr}^{-1} \, \mathrm{yr}^{-1} \right]$ p from source 10^{37} Proton, $E_{\text{cut}} = 10^{20} \,\text{eV}$ - Proton, $E_{\rm cut} = 10^{20.5} \, {\rm eV}$ mixed composition at source ... Iron, $E_{\rm cut} = 10^{20} \, {\rm eV}$ — Iron, $E_{\text{cut}} = 10^{20.5} \,\text{eV}$ maximum energy-limited 19.0 19.5 17.5 18.0 18.5 20.0 20.5 18.5 19.5 20.5 $\log_{10}(E/eV)$ $\log_{10}(E/eV)$

Knowing composition is the key to understanding the flux suppression

Energy spectrum - what is causing the suppression?

Energy spectrum - what is causing the suppression?

Science goals of the Auger upgrade

I. Elucidate origin of flux suppression and mass composition;

- differentiate between the energy loss due to propagation (e.g. GZK suppression) and the maximum energy of particles at source
- Galactic or extragalactic origin?
- reliable estimates of propagation-induced neutrino and gamma ray flux

2. Search for contribution of protons at the highest energy

- estimate physics potential of existing and future CR, neutrino, gamma-ray detectors
- determine prospect for proton astronomy (open a new window or not?)
- predict propagation-induced neutrino and gamma ray fluxes

3. Study hadronic interactions and extensive air showers above $E_{CM} > 70 \text{ TeV}$

- particle physics beyond man-made colliders (e.g. cross sections)
- derivation of constraints on new physics phenomena (e.g. extra dimensions)

Proposed Auger upgrade for beyond 2015

- 1) Upgrade aging SD electronics for faster sampling and better event reconstruction
- 2) Install new detector on SDs for better muon-to-electromagnetic signal discrimination
 - scintillator on top of WCD

Proposed Auger upgrade for beyond 2015

- 1) Upgrade aging SD electronics for faster sampling and better event reconstruction
- 2) Install new detector on SDs for better muon-to-electromagnetic signal discrimination
 - scintillator on top of WCD

Ultra High Energy Cosmic Rays

What are they?

- Something more than mere p and Fe nuclei
- Intermediate species play a bigger role than expected
- Puzzling: lack of p and Fe at currently available highest energy

Where are they coming from?

- Around E=5x10¹⁸ eV (ankle): limit some models that explain ankle feature
- Suppression (E>4x10¹⁹ eV): need larger statistics

How do they interact?

- Measurement of X_{max} distribution actively helps to understand hadronic interactions at $E_{\text{CM}} \gtrsim 35\,\text{TeV}$
- Manmade collider: LHC's 14 TeV data will help, information on forward region crucial

Summary

- Auger Observatory collected sufficient data to obtain distribution of X_{max};
- X_{max} distribution data analyzed by creating MC template;
- Surprising results:
 - incompatible with composition dominated by protons + iron nuclei;
 - intermediate (helium, nitrogen) nuclei required for acceptable fit qualities;
 - considerable presence of protons below ankle region;
 - general behavior of protons similar for all three hadronic interaction models;
 - able to constrain a hadronic interaction model in some cases;
- Observed trend may be due to deviations from the standard extrapolation in hadronic interaction models;
- Upgrade Auger detectors to understand the cause of flux suppression through better composition determination; will be proposed by the international collaboration.